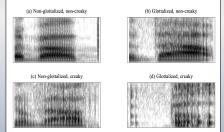


Acoustic comparison of /t/ glottalization and phrasal creak

Marc Garellek and Scott Seyfarth

Department of Linguistics, UC San Diego mgarellek@ucsd.edu


ASA Spring 2016 1pSC Salt Lake City

Introduction

- · In American English, creaky voice has several linguistic origins, such as:
 - /t/ glottalization about [əbau?]
 - Phrasal creak creaky voice that is prosodically conditioned, e.g. phrase-final creak.
- · Different sources of creaky voice can co-occur on a single word (Fig. 1).

Is /t/ glottalization acoustically distinct from phrasal creak?

Fig 1: 'about' with glottalization/ creak

- · Listeners can distinguish minimal pairs like glottalized 'motley' [mo?li] and creaky 'Molly' [moli] (Garellek 2015).
 - > This suggests different articulatory mechanisms and acoustic realizations.

Research questions:

- Do different linguistic sources of creaky voice have distinct articulations and acoustic attributes?
- Part of a broader effort towards taxonomy of types of creaky voice based on their acoustic characteristics and uses in language (e.g. Keating et al. 2015).

Corpus and measures

- 40 Ohioan speakers from Buckeye Corpus (Pitt et al. 2007), genderbalanced.
- Words with coda /t/ in simple codas, realized as [t] or [?] (annotations from corpus, hand-checked).
- Phrasal creak was identified based on corpus log files, hand-checked.
- Vowel before /t/ was analyzed

Measure	Explanation			
H1*-H2*	Difference in amplitude between H1 & H2			
H2*-H4*	Difference in amplitude between H2 & H4			
H1*-A1*	Difference in amplitude between H1			
	& harmonic nearest F1			
H1*-A2*	Difference in amplitude between H1			
	& harmonic nearest F2			
H1*-A3*	Difference in amplitude between H1			
	& harmonic nearest F3			
H4*-2K*	Difference in amplitude between H4			
	& harmonic nearest 2000 Hz			
2K*-5K*	Difference in amplitude between Harmonic			
	& nearest 2000 Hz harmonic nearest 5000 Hz			
F0	Fundamental frequency			
CPP	Cepstral peak prominence			
HNR05	Harmonics-to-noise ratio <500 Hz			
SHR	Subharmonics-to-harmonics ratio			

- Measures correlated with common properties of creaky voice, relative to modal voice:
 - ➤ Lower spectral tilt (H1*-H2* through 2K*-5K*)
 - > Lower f0
 - > Lower periodicity (CPP, HNR05)
 - > Stronger subharmonics (SHR)
- Each measure was standardized within speaker, outliers removed (~20% of total
- In total, 8751 vowels were analyzed:
 - > Non-creaky = 7665; Creaky = 1086 > [t] = 3253; [?] = 5498
- For each measure, we included average value and change in measure from first to final third of vowel.

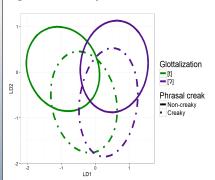
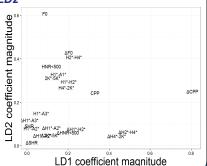
Analysis

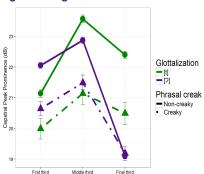
Linear discriminant analysis (LDA): contribution of the acoustic measures to the identification of glottal stops and phrasal creak.

Confusion matrix from LDA:

Actual ➡ Predicted ↓	Non-creaky [t]	Creaky [t]	Non-creaky [?]	Creaky [?]
Non-creaky [t]	1803	144	631	89
Creaky [t]	10	2	10	3
Non-creaky [?]	1057	214	4098	573
Creaky [?]	7	16	49	45

Fig 2: LD1/LD2 space with 50% CIs


Fig 3: Predictor coefficients in LD1/ LD2

Discussion

- Glottalization shows large drop in periodicity over course of vowel.
- As expected, phrasal creak is characterized by lower f0.

Fig 4: Changes in CPP over vowel

- Given that listeners are sensitive to pitch and noise measures (Garellek et al. 2016). listeners likely use these characteristics to differentiate different types of creaky voice.
- Spectral tilt measures less effective predictors of creak/glottalization, perhaps due to variability in realization of creak:
 - > Some speakers show increase in spectral tilt measures, consistent with vocal fold spreading (cf. Slifka 2006).

Acknowledgments

Thanks to Meagan Rose Baron, Julia Dinwiddie, Hilda Parra, Alexander Wang, Stefan Wooding, and Yushi Zhao for help with coding.

References

- Garellek, M. (2015). Perception of glottalization and phrase-final creak. JASA 137: 822-
- Garellek M. Samlan R. Gerratt B R. & Kreiman I (2016) Modeling the voice source in terms of spectral slopes. *JASA 139*: 1404–1410.

 Keating, P., Garellek, M., & Kreiman, J. (2015). Acoustic properties of different kinds of
- creaky voice ICPh\$ 18
- Pitt, M. A., Dilley, L., Johnson, K., Kiesling, S., Raymond, W., Hume, E., & Fosle Lussier, E. (2007). Buckeye Corpus of Conversa-tional Speech (2nd release),
- Shue, Y.-L., Keating, P., Vicenik, C., &. Yu, K. (2011). VoiceSauce: A program for voice analysis. ICPhS 2011.
- Slifka, J. (2006). Some physiological correlates to regular and irregular phonation at the end of an utterance. JVoice 20: 171-186.